When you exploring your data, try using the head function to see a few rows of your data. Python also has a head() function.
> library(palmerpenguins) > head(penguins) # A tibble: 6 × 8 species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g sex year <fct> <fct> <dbl> <dbl> <int> <int> <fct> <int> 1 Adelie Torgersen 39.1 18.7 181 3750 male 2007 2 Adelie Torgersen 39.5 17.4 186 3800 female 2007 3 Adelie Torgersen 40.3 18 195 3250 female 2007 4 Adelie Torgersen NA NA NA NA NA 2007 5 Adelie Torgersen 36.7 19.3 193 3450 female 2007 6 Adelie Torgersen 39.3 20.6 190 3650 male 2007
You can even use drop_na() here with a pipe.
> head(penguins) %>% drop_na() # A tibble: 5 × 8 species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g sex year <fct> <fct> <dbl> <dbl> <int> <int> <fct> <int> 1 Adelie Torgersen 39.1 18.7 181 3750 male 2007 2 Adelie Torgersen 39.5 17.4 186 3800 female 2007 3 Adelie Torgersen 40.3 18 195 3250 female 2007 4 Adelie Torgersen 36.7 19.3 193 3450 female 2007 5 Adelie Torgersen 39.3 20.6 190 3650 male 2007